A numerical analysis of effect of segmental lining joints on tunnel support internal forces under seismic loading

Authors

  • H. Jahankhah Geotechnical Eng. Research Center, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran
  • I. Kheyrandish Mining Engineering Department, Tarbiat Modares University, Tehran, Iran
  • M. Ahmadi Mining Engineering Department, Tarbiat Modares University, Tehran, Iran
Abstract:

During an earthquake, the better performance of segmental tunnel lining, compared to the continuous in-cast concrete lining, is generally related to the joints between segments. In order to better understand the influence of the segment joints, their effect on the internal forces induced in tunnel lining simultaneously with the effects of the other influential parameters should be considered. In this work, the segmental joints were simulated by the representative stiffnesses and effects of these characteristics in relation to the other parameters such as the soil-liner interface behavior, number of segments in each ring and thickness of segments on the internal forces induced in structure were investigated. For this purpose, 2D numerical analyses were performed and the results obtained were discussed. Results showed that under the seismic condition, the components that had the most significant role on the internal axial forces induced in the segmental lining were rotational stiffness and axial stiffness of joints. Also the bending moments were more affected by the rotational stiffness. Generally, the radial joint stiffness had a less effect on the induced internal forces. With increase in the number of segments and their thickness, the effect of joint stiffness on the internal forces increases and the design of joints should be given more attention; however, the effects of joint stiffness and frictional behavior at the soil-liner interface on the maximum induced forces are almost independent from each other. Also in a specified joint behavior, by variation in each one of the other parameters including the soil-liner interface condition, number of segments and their thickness, the absolute magnitude of the maximum induced internal forces sometimes change significantly.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Effect of Segmental Joint on Internal Forces in Tunnel Lining under Seismic Loading by Numerical Method

Although segmental tunnel linings are often used for seismic areas, the influence of segment joints on the segmental lining behavior under seismic loading has not been thoroughly considered in the literature. This paper presents the results of a numerical study investigating the effects of the rotational, axial, and radial joint stiffness of the longitudinal joints on the structural force...

full text

Effect of segmental joint stiffness on tunnel lining internal forces under static conditions

According to the wide application of segmental lining in mechanized tunneling, recognizing the behavior of segmental lining joints is important in tunnels designing. In the structural analysis of the tunnel segmental lining, segmental joints can be considered as elastic joints, and their stiffness characteristics are affected by the rotational, shear, and axial stiffness. The purpose of this wo...

full text

Prediction of structural forces of segmental tunnel lining using FEM based artificial neural network

To judge about the performance of designed support system for tunnels, structural forces i.e. peak values of axial and shear forces and moments are critical parameters. So in this study, at first a complete database using finite element method was prepared. Then, a model of artificial neural network (ANN) using multi-layer perceptron was developed to estimate lining structural forces. Sensitivi...

full text

Evaluation of structural analysis of tunnel segmental lining using beam-spring method and force-method (Case study: Chamshir water conveyance tunnel)

The joints between segmental rings can withstand a certain amount of bending moment as well as axial and shear forces. Generally, in the structural analysis of tunnel segmental lining, the joints can be modeled as elastic hinges or rotational springs, and their rigidity should be demonstrated in terms of the rigidity of the joints or their rotational stiffness. Therefore, the bending moment act...

full text

Numerical Investigation on the effect of the internal water pressure and leakage force on the behavior of tunnel lining

There is a pressure tunnel as the type of structures, which is mainly used in the hydroelectric power industry and in order to design and construct these structures, there are many engineering challenges. One of these problems is the leakage around the tunnel and, consequently, erosion caused by excessive water pressure, and it will lead to instability and the destruction of pressure tunnels. T...

full text

Numerical Modelling of the Segmental Lining of Underground Structures

There are several methods for analysing the behaviour of underground structures under different loading conditions. Most of these methods have many simplifications; therefore, in some cases, the results are too conservative and a very high safety factor, usually of more than 2 is needed. On the other hand, for stability analysis and the designing of support systems, these methods consider segme...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 4

pages  979- 999

publication date 2019-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023